振動台実験	木造制振装置	木造軸組構法
粘弾性ダンパー	弾塑性ダンパー	性能試験

<u>1. はじめに</u>

前報(その 1)では,本振動台実験の概要について述べた。 その 2 では,本振動台実験の結果概要,並びに荷重-変形 関係に着目して結果の分析をおこなう。

<u>2. 実験結果</u>

実験結果の一例として, 試験体 GVA について, 図 1 に JMA-KOBE 波加振後に生じた目視確認された損傷状況を 示す。図 2 に JMA-KOBE 入力時の試験体の頂部加速 度・層間変位を示す。すべての試験体における入力地震 波ごとの最大層間変位,最大加速度を表 1,表 2 に示す (順序は最大層間変位の大きい順)。X-Wall+PLY の組み合 わせは,すべての入力波ケースに対しもっとも層間変位 が小さく, JMA-KOBE 入力時の最大加速度も他に比べ抑 えられている。制振要素 GVA, X-Wall は耐震要素 PLY, Brace に対して優位性があり, PLY, Brace を組み合わせる ことによりさらに優位になるといえる。

Performance	Proof	Tests	of	Wooden	Frame	Structures	with
Passive Contr	ol Devi	ices ba	sed	on Shakir	ng-Table	Experimen	t,
Part-2 Study of	on Forc	e-Disp	lace	ement Rela	ationshi	р	

正会員	○真崎雄一*1	同	佐藤和	刘昭 ^{*2}	同	涌井栄治*3
同	井口道雄*4	同	加藤	惇 ^{*5}	同	肥田剛典*2
同	永野正行*6					

表1 最大層間変位

			損傷限界	安全限界					
入力地震波	Frame	PLY	Brace	PLY + GVA	GVA	X-Wall	Brace + GVA	X-Wall + GVA	X-Wall + PLY
BCJ Lv.1 (50%)	51.9	4.2	4.5	2.6	3.9	3.3	2.6	2.3	1.7
BCJ Lv.1	122.9	8.8	9.8	5.4	9.3	7.7	5.7	4.9	3.4
BCJ Lv.2	233.8	44.6	19.6	14.5	29.0	20.9	11.2	12.9	7.4
JMA-KOBE (1)	-	250.0	176.8	72.5	81.4	58.2	54.9	42.9	22.5
JMA-KOBE (2)	_	_	_	134.2	100.7	70.9	55.2	39.1	26.1

表 2 最大加速度一覧

	最大加速度 [gal]								
入力地震波	Frame	PLY	Brace	PLY + GVA	GVA	X-Wall	Brace + GVA	X-Wall + GVA	X-Wall + PLY
BCJ Lv.1 (50%)	343	281	355	223	171	215	259	177	226
BCJ Lv.1	371	441	601	397	282	304	438	298	404
BCJ Lv.2	519	738	803	615	533	522	712	449	618
JMA-KOBE (1)	I	1011	1022	1308	1212	1226	1298	1184	1029
JMA-KOBE (2)	-	_	_	1335	1328	1259	1340	1277	1171

3. 荷重-変形関係の評価

3.1 評価方法

荷重-変形関係は次の手順で評価する。図 3 に試験体 PLY+GVA の各入力地震波に対して作成した履歴曲線を示 す。これらの履歴曲線には正側・負側の処女変形時の包 絡線も示されている。本報では、この包絡線を抜き出して 図 4 に示す骨格曲線を作成する。なお、分析には正側と負 側の平均値を代表値として使用する。

Yuichi Masaki, Toshiaki Sato, Eiji Wakui, Michio Iguchi Jun Kato, Toshiaki Sato, Takenori Hida, Masayuki Nagano

3.2 動的加振と擬似動的加振

図5に本実験で得られた試験体 GVA, X-Wall の骨格曲線 と擬似動的加振(定常加振,最大速度 15kine)での結果¹⁾を 比較して示す。この図より振動台での骨格曲線と擬似動 的加振で得られた結果は同じ傾向を有しており,この図よ り,両者の骨格曲線は類似しており,振動台での実験結果 が擬似動的加振実験と整合することが確認された。

3.3 単体要素の比較

図 6 に単体要素試験体に対する骨格曲線を比較して示 す。試験体 Brace は層間変位 50mm 程度まで耐力面で優位 性があるが,それ以降の変形領域では試験体 GVA と X-Wall に優位性がある。また,試験体 Brace と PLY は大変 形時に試験体 Frame に近づくことが分かる。

全ての試験体に Frame 耐力が含まれていることから, Frame 耐力を減算し荷重低下部分の補正をした要素ごとの 骨格曲線(全て4構面の結果)を図7に示す。

3.4 X-Wall を用いた複合要素

図8に制振要素 X-Wall を PLY に付加する場合の比較を 示す。制振要素 X-Wall では初期変位より耐力が上昇する ことが確認できる。

*1(有) MASA 建築構造設計室 代表取締役

- *2 東京理科大学 助教,博士(工学)
- *3(有)MASA 建築構造設計室 構造設計部長,工修
- *4 東京理科大学 名誉教授,工博
- *5 東京理科大学大学院 修士課程
- *6 東京理科大学 教授,博士(工学)

図9には試験体 X-Wall+PLY の実験結果と図7に示した 各要素の骨格曲線の加算値との比較を示す。試験体 X-Wall+PLY を構成している X-Wall 要素, PLY 要素, Frame 要 素の結果を加算した曲線と試験体 X-Wall+PLY の実験結果 がほぼ等しく, 要素による加算則が概ね成り立つことが確 認できる。

3.5 GVA を用いた複合要素

図 10 に制振要素 GVA を Brace, PLY, X-Wall に付加する 場合の比較を示す。層間変位 20 ~ 40mm(損傷限界変形程 度)未満では単体要素とほぼ同じ特性を示すが,これ以降 では複合効果による耐力上昇が確認される。

<u>4. まとめ</u>

本報では、本実験の結果概要、荷重-変形関係の評価方 法を示し、その結果について分析をおこなった。

- 本振動台実験で得られた骨格曲線と擬似動的加振での 結果は同じ傾向を有しており、本実験結果の信憑性が 確認された。
- 2. 制振要素 X-Wall を用いた複合要素では加算則が成立し 変形領域に係わらず耐力上昇が見られ, GVA を用いた 複合要素は損傷限界変形以降で耐力上昇を期待できる ことが確認された。

参考文献

- 佐藤利昭,加藤惇,真崎雄一,井口道雄,永野正行,肥田剛典: 粘弾性制振装置の接合部特性の評価 その2 接合部のモデル化と フレーム解析,日本地震工学会大会,CD-R,2012.11
- *1 Director, MASA Architectural Design Bureau
- *2 Assist. Prof., Tokyo University of science, Dr. Eng.
- *3 Manager, MASA Structural Design Bureau, M. Eng.
- *4 Prof. Emeritus, Tokyo University of Science, Dr. Eng.
- *5 Graduate Student, Tokyo University of Science
- *6 Prof., Tokyo University of Science, Dr. Eng.