粘弾性制振装置を付加した木造 軸組架構のフレーム解析モデル の検証と粘弾性体の温度変化に よる架構への影響評価

加藤 惇 ――― * 1	佐藤利昭 * 2
肥田剛典 ——— * 2	井口道雄 ——— * 3
真崎雄一 * 4	永野正行 ——— * 5

キーワード:

木造軸組架構,フレーム解析,モデル化,接合部要素実験, 粘弾性ダンパー

Keywords:

Wood frame structure, Frame analysis, Modeling, Element tests of joints, Visco-elastic damper

1. はじめに

近年,木造住宅の耐震性向上のための工法の 1 つとして,制振 装置を導入する事例が徐々に増加してきている。しかし,制振装置 の性能や軸組架構に与える影響を,設計段階で評価することは,未 だ困難を伴う。本論文は,これらの現況を鑑み,現在までに改良を 重ねてきた制振装置¹⁾を検討対象に,木造軸組架構のフレーム解析 モデルを構築し,その妥当性を擬似動的加振実験と振動台実験のシ ミュレーション解析によって検証すると共に,粘弾性体の温度変化 が架構の性能や部材応力に与える影響を評価したものである。

2. 要素実験に基づく制振装置のモデル化

解析的検討を進める上で,解析モデルの予測精度の向上は極めて 重要で,同時にその構築方法も説明が求められる。本章では,要素 実験より定めた各部の非線形特性のモデル化を示すと共に,構築し た粘弾性制振装置のフレーム解析モデルの諸条件についてまとめる。

2.1 粘弾性制振装置の概要

本論文で対象とする粘弾性制振装置の概要として,図1に架構 に取り付けた軸組図と共に,本装置の構成要素をまとめる。

図 1 に示すように、本装置はダイアモンド型に構成した鋼製斜 材(STKR400)の上下頂点に、粘弾性体を内蔵する制振金物を配 したもので、架構の水平せん断変形を減衰部材である粘弾性体に伝 達させる機構を採用している。構成部材の一つである柱-斜材接合

*1 東京理科大学大学院 修士課程

- (〒 278-8510 千葉県野田市山崎 2641)
- ^{*2} 東京理科大学理工学部建築学科 助教・博士 (工学)
- ^{*3} 東京理科大学理工学部建築学科 名誉教授·工博
- ^{*4} (有) MASA 建築構造設計室 代表取締役
- *5 東京理科大学理工学部建築学科 教授・博士(工学)

VALIDATION OF FRAME ANALYSIS MODELING FOR WOOD FRAME STRUCTURES WITH VISCO-ELASTIC DAMPERS AND INFLUENCE OF TEMPERATURE VARIATION ON SEISMIC PERFORMANCE

Jun KATO * 1	Toshiaki SATO — * 2
Takenori HIDA * 2	Michio IGUCHI — * 3
Yuichi MASAKI — * 4	Masavuki NAGANO — * 5

This paper describes the validation of frame analysis modeling of wood frame structures with visco-elastic structural control devices. The accuracy of the analytical model is confirmed by comparing it with the experimental results of pseudo-dynamic tests and shaking table tests. The effects of temperature variation in the visco-elastic material are investigated by seismic response analyses. The analysis results show that these devices have exhibited high performance than others when the temperature of the visco-elastic material was $16^{\circ}C$.

部に設定した接合金物 (SGHC)には、大変形領域での弾塑性履 歴を付与するため、同図に示すような切り欠きを設けてある。

本制振装置を組み込む軸組架構では、柱一横架材接合部にホール ダウン金物 B-HD30 (短期許容耐力:36.8 kN) を採用するこ とを標準仕様としている。この仕様が妥当であるか否かは、本検討 で着目すべき重要な項目である。

2.2 解析モデルの概要

著者らは、本制振装置と類似の機構を有する装置の応答を調べる 手段として、既にせん断バネモデルを提示しており²⁰、その一部を 修正することで、本装置の応答計算も可能である。しかし、本論文 で取り上げる評価項目を精査する上では、様々な条件下における各 部の応力状態を把握する必要があることから、精度の高いフレーム 解析モデルを設定しなければならない。

^{*1} Graduate Student, Dept. of Architecture, Faculty of Science and Technology, Tokyo Univ. of Science

²² Assist. Prof., Dept. of Architecture, Faculty of Science and Technology, Tokyo Univ. of Science, Dr. Eng.

³³ Prof. Emeritus, Dept. of Architecture, Faculty of Science and Technology, Tokyo Univ. of Science, Dr. Eng.

⁴ Director, MASA Architectural Design Bureau

⁵ Prof., Dept. of Architecture, Faculty of Science and Technology, Tokyo Univ. of Science, Dr. Eng.

制振装置を付加した木造軸組架構を対象としたフレーム解析モデ ルの設定方法については、松田らが体系的な検討を進めており³⁰、 本論文でもこれを参考にモデルの構築を進める。図 2 に解析モデ ルの概要をまとめる。本装置のモデル化に当たり、非線形特性の設 定が必要となるのは、① 粘弾性体の挙動を示す制振金物部、② 弾 塑性履歴を有する接合金物、③ 斜材と両金物を結ぶボルト接合部、 ④ ホールダウン金物の特性を示す柱-横架材接合部の計 4 箇所 で、同図ではこれらを二重節点 ① ~ ④ と表記してある。これら 以外の各部材は、曲げ棒としてモデル化した。以降 2.3 ~ 2.5 節 では、これらの非線形特性の設定方法について述べる。

2.3 制振金物のモデル化

粘弾性体の特性を評価する節点 ① には、黄らの研究⁴⁾を参考 に、次式で評価される Kelvin-Voigt モデルを採用した。

$$k_{\nu} = 8.57 f^{0.3} \gamma_{a}^{-0.24} e^{-0.073\theta} \times A/d$$
(1)
$$c_{\nu} = 2.18 f^{-0.53} \gamma_{a}^{-0.089} e^{-0.1\theta} \times A/d$$
(2)

式 (1), (2) で f:振動数, y_a : せん断歪み, θ :温度を表し, $A \ge d$ は それぞれ粘弾性体のせん断面積と厚さである。これら剛性 k, ε 減 衰係数 c, c, i,制振金物のせん断方向, f なわち架構の水平方向の特 性として設定した。軸方向の特性には,既往研究⁵⁾を参考に, せん 断方向の 3 倍の剛性のみを与え,減衰は 0 とした。また,回転剛性 は無限大とした。後述する数値実験では,温度を変動させた地震波 による検討を行うため,参考までに, せん断変形を 15 mm とした際 の $k_v \ge c_v$ の変化を図 3 に示す。

本制振装置で採用している粘弾性体は,300 % のせん断歪みまで 保証されているもので,その厚みを 5 mm としたことから,可動範 囲を 15 mm に制限している。応答計算上では,この影響を当該部 のせん断変形が 15 mm に達した時点で剛性を無限大として考慮し たが,後述する振動台実験のシミュレーション解析では,当該変位 に達していないため,本論文では問題にしない。

2.4 接合金物とボルト接合部のモデル化

本節では,接合金物と鋼製斜材のボルト接合部周辺に生じる損傷 の状況を示した上で,それらと対応するモデルの設定方法を述べる。 当該部の損傷の状況を観察した結果を,図4にまとめて示す。図2 のモデルとの対応を確認すると,節点②では,図4(a)に示す接 合金物の降伏を,節点③では同図(b)に示す鋼製斜材の端部に生 じるボルト孔の拡大を評価している。これらの特性は,既報にて実 施した要素実験^{0,7}の結果より定められる。図5に柱-斜材接合 部に対して実施した要素実験の概要を示す。

図 5 (a) に示した接合金物に対する試験は,実大架構における制振 装置の取り付け角度を考慮し,斜材に軸力が作用した状態での履歴 特性を調べたものである。同図 (b) の鋼製斜材のみに対して実施し た試験では,接合金物を治具で拘束することで,ボルト孔の拡大に 伴う特性のみを抽出したものである。両試験は,鉛直方向に静的な 強制変位を与えるもので,同方向の荷重も計測した。

これらの試験で得られた特性を図 6 に示す。同図には,各節点に 設定したモデルの履歴特性も併せて表示してある。

図 6 (a) に示す履歴特性は, 接合金物の曲げ変形に伴うもので, 試験結果は, 金物が変形する方向によって 2 次剛性が異なるが, 設定したモデルでは, 斜材の軸方向, すなわち斜材の取り付く角度

に履歴特性を集約するため、両者の平均的な特性とした。履歴則は、 この特性が鋼材の降伏を意味することから、Bi-linear型とした。

同図(b)には、ボルト孔の拡大を表す特性が示してあり、モデル でもそれと対応する斜材の軸方向に設定した。つまり、柱-斜材接 合部では、これら2種類の軸方向バネが直列に結ばれる。同図に認 められる初期滑りは、ボルトのクリアランスを意味する。要素実験 では、ボルトを手で締め付けため、初期滑り時の締結力による摩擦 の影響は小さいが、後述する擬似動的加振実験や振動台実験では、 試験体の施工を機械締めで行ったため、摩擦による初期滑り時の負 担荷重は増加していたと考えられる。これを考慮し、後述するシミ ュレーション解析では、初期滑り時に負担する荷重を擬似動的加振 実験の結果と対応させるように 10 kN 割り増し、12 kN として計 算精度の向上を図った。

2.5 柱-横架材接合部のモデル化

ホールダウン金物を取り付けた接合部では、モーメント抵抗が期 待されるため、回転剛性を考慮する必要がある。前節と同様、この特 性も、既報にて実施した要素実験⁸⁾の結果を基に定める。この要素実 験では、片側にホールダウン金物を取り付け、水平方向加振によっ て特性を抽出した。図 7 に要素実験の概要を示す。

試験は、図7(b)に示した加振位置に取り付けた高速アクチュエ ータによって変位振幅を制御し、表1に示す目標変形角と加振振動 数の組み合わせにより実施した。また各試験では、図8に示す繰返 し載荷実験によって履歴特性を抽出した。

節点 ④ のモデル化に用いた特性は, 試験結果より各変形レベル における処女載荷時の履歴ループを取り出し, それを Multi-linear 型の履歴モデルで表現し, それを回転剛性とした。この他, 軸方向 の特性では引張と圧縮を区別し, 引張側の特性を当該金物の引張試 験の結果より, 圧縮側の特性を稲山の研究 ⁹⁾ より定めた。図 9 に 柱-横架材接合部に設定した履歴モデルをまとめて示す。なお, 材 のせん断方向の影響は無視した。

3. シミュレーション解析によるモデルの検証

本章では、前章にて設定した解析モデルの妥当性を、本制振装置 を軸組架構に取り付けた 2 種類の実験に対するシミュレーション 解析を通して検証する。

3.1 擬似動的加振実験に対するシミュレーション解析

本制振装置を組み込んだ軸組架構に対する擬似動的加振実験のシ ミュレーション解析を行う。試験は 2.5 節に示した柱-横架材接合 部に対する要素実験を踏襲したもので,試験体は図 1 および図 2 に示した 1 スパン架構とし,架構頂部を水平方向に加振した。試験 方法も同様で,表 1 の目標変形角を層間変形角として変位制御加 振を行った。なお,本解析時では,粘弾性体の温度を実験時の 25 ℃とした。図 10 に各目標変形角毎の試験結果と解析結果の履歴 曲線を比較して示す。また,図 11 に骨格曲線,等価剛性,等価粘性 減衰定数,エネルギー吸収量の変形レベル毎の比較結果を示す。

図 10 より,層間変形角 1/30 rad 時では試験結果と解析結果に 差異が認められるが,層間変位 50 mm 付近から現れるピンチング 挙動は再現できており,またそれ以外の変形角では,両者が調和的 である。図 11 の結果でエネルギー吸収量に着目すると,解析結果 が実験結果より若干低いため,等価粘性減衰定数の解析結果が全般

表1 柱-横架材接合部の要素実験の加振条件

試験順	1	2	3	4
振動数(Hz)	2	1	0.5	0.25
目標変形角 (rad.)	1/240	1/120	1/60	1/30

的に過小評価となっているが,層間変位 30 mm 程度から徐々に 低下する傾向は,両者で対応している。後述するシミュレーション 解析において,粘弾性体の変形量が精度良く再現できることから, この誤差の要因は,接合部毎に設定した履歴に伴うエネルギー消費 の評価精度によるものと推察される。この他の骨格曲線,等価剛 性は,試験結果と解析結果が概ね良好に対応している。

3.2 振動台実験に対するシミュレーション解析

本節では、2 × 3 スパンの 1 層軸組架構に対する振動台実験¹⁰⁾ のシミュレーション解析により、本解析モデルの応答予測精度を確 認する。図 12 に試験体と解析モデルの概要を示す。なお、同図は 共に振動台実験の加振方向の構面を表している。

図12 振動台実験の試験体(左)と解析モデル(右)

本実験の軸組架構に使用した材料はすべて集成材で,柱 と土台は120×120,その他の横架材には120×240を用い た。床面は,厚物合板(t=24 mm)を用いた剛床仕様であ る。振動台実験では、上載荷重として4 ton の錘を小屋組 に緊結した。応答解析における質量配置は,解析を1構 面としたことから、上載荷重4 tonを1/2倍し,それを各 柱頭位置に均等に振り分けた。入力地震波は、日本建築セ ンター波(BCJ-Lv.1,2)とBCJ-Lv.1を50%に縮 小した波形,およびJMA-KOBE(1995年兵庫県南部地 震・神戸海洋気象台記録)NS成分である。表2に振動 台実験の加振スケジュールを、図13に入力地震波の擬 似速度応答スペクトルを示す。表2 加振スケジュール

時刻歴応答解析では、表 2 に示した全地震波加振に対する予測 精度を検証するため、図 14 に示すように、4 つの入力地震波の加 速度波形を 1 つの入力として連続解析を行った。各地震波の間には 10s の空白を設けた。なお、実施した振動台実験では、各地震波加振 の間に STEP 波による加振を実施したが、レベルが十分に小さい ことから、本論文ではその影響を無視した。

各地震波加振における解析精度の検証結果として,実験値を縦軸 に,計算値を横軸にとり,図 15 (a) に最大層間変位,(b) に粘弾性 体のせん断変形量の最大値を比較した結果を示す。また,図 16 に は各地震波入力時における試験体頂部加速度の擬似速度応答スペク トルを比較した結果を示す。なお,応答解析では,粘弾性体の初期 温度を試験時の計測結果に併せ 16 ℃ と設定した。

図 15 より,最大層間変位,粘弾性体の最大せん断変形量とも試 験結果と解析結果は良好な対応を示していることが分かる。図 16 に示した擬似速度応答スペクトルでは,JMA-KOBE 入力時に若干 の差異が認められるが,全般的には調和的な結果が得られている。 図 17 に,JMA-KOBE 入力時における,層間変位と粘弾性体のせん 断変形の時刻歴を示す。

図 17 に示す結果より,実験結果と解析結果は,振幅,位相とも 概ね良く対応しており,本解析モデルによって必要な予測精度が確 保されていると判断される。この他 BCJ-Lv. 1, Lv. 2 入力時でも, 解析結果と実験結果が良く対応している事を,別途確認してある。 以上 2 種類の実験に対するシミュレーション解析の結果より,本 論文で設定した解析モデルの妥当性が確認された。

4. 数値実験による安全性の検討

本論文で対象とする粘弾性制振装置に内蔵された粘弾性体は,一 般に高温では粘弾性体のせん断剛性は低下し,低温では上昇する特 性を有している。粘弾性単体要素に対する評価としては,その特性 を精度良く再現するモデル^{11),12)}が既に提案され,それが地震応答 に与える影響も確認されている²⁾。しかし,温度変化が架構の各部 に与える影響を詳細に検討した研究は少なく,同時に実験的にそれ らを評価することも難しい。本章では,それら温度の影響を検討す ることを目的に,前章までに予測精度を検証したモデルを用い,粘 弾性体の温度を変化させた数値実験を行うことにより,粘弾性体の 温度変化が架構に及ぼす影響の把握を試みる。

4.1 検討条件

数値実験には、振動台実験で用いた加速度波形の他に、第2種地 盤の増幅を考慮した設計用スペクトルと適合する人工地震波を加え て検討した。地震波の位相特性は、El Centro NS成分, Hachinohe NS 成分, JMA-Kobe NS成分を用い、以降ではそれぞれ el2, ha2, ko2 と呼ぶ。また中小地震を想定し、これらの振幅を 0.5倍した地震波 (以下, el1, ha1, ko1)も用いた。図18(a)に el2, ha2, ko2のエネ ルギースペクトル、図18(b)に作成した人工地震波と設計用スペク トルの比較を示す。なお、粘弾性体の温度は、振動台実験の解析に 用いた 16 ℃ の他.0 ℃、40 ℃ を加えた 3 ケースとした。

4.2 温度変化による架構の応答評価

異なる温度条件下における各地震波入力時の最大層間変位と、粘 弾性体の最大せん断変形量を整理し、図 19 に結果をまとめる。

図19 層間変位と粘弾性体のせん断変形に温度が与える影響

図 19 より,粘弾性体の温度が高いほど,粘弾性体の剛性が低下 するため,粘弾性体のせん断変形量が増加することが分かる。一方, 層間変位においても温度が高いほど変位は増大傾向にあるが,振動 数依存性の影響から,入力波によって傾向が異なる様子が窺える。

これらの要因を分析するため、各部が吸収するエネルギー量に着 目する。図 20 に、粘弾性体部分と柱ー斜材接合部など各部で吸収 するエネルギー量とその割合を示す。同図より、各温度での粘弾性 体によるエネルギー吸収割合は、16 $^{\circ}$ の場合が最も高く、0 $^{\circ}$ 、 40 $^{\circ}$ の場合には、16 $^{\circ}$ の半分程度まで低下する傾向が認められ る。この要因は、柱ー斜材接合部をはじめとする各部の非線形特性 による履歴吸収エネルギーの増加、およびそれらの損傷に伴う粘弾 性体への応力伝達の低下によるものと推察される。特に、40 $^{\circ}$ の場 合には他の温度と比較して、地震波の差異によらず層間変位の増大 に伴う塑性歪エネルギーの増加が確認できる。これらを踏まえると、 標準的な 16 $^{\circ}$ の場合のみを評価することは、設計上不十分であると 考えられる。

地震波の差異に着目すると、入力レベルの大きい地震波では接合 部での履歴吸収エネルギーが増加し、粘弾性体のエネルギー吸収割 合が低下することがわかる。ここで、0 ℃ と 40 ℃ では、架構の全 エネルギー吸収量に最大で 3 倍程度の差異が認められるため、その 要因を分析する。図 21 に el2、ha2、ko2 入力時における、各温度 時における頂部加速度に対する入力地震波の伝達関数を示す。

図21 頂部加速度の入力地震波に対する伝達関数

図 21 の結果より,各温度の卓越振動数は、0 \mbox{C} で約 4 Hz, 40 \mbox{C} で約 2 Hz であることが確認され、図 18 (a) に示したエネルギース ペクトルに対応する振動数のエネルギー量を読み取ると、el2 で約 3 倍, ha2 で約 2 倍の入力エネルギーの差異が認められる。以上か ら、0 \mbox{C} と 40 \mbox{C} における架構全体のエネルギー吸収量が異なる 要因は、粘弾性体の温度変化に伴う固有振動数の変化と考えられる。

最後に, 粘弾性体の温度変化が周辺部材に及ぼす影響について検 討する。設定したすべての温度で, 最大層間変位が損傷限界変形角 1/120 rad を超えた, BCJ-Lv2, JMA-Kobe, el2, ha2, ko2 を対象に, 柱脚部に作用した引抜力と曲げモーメントを調べる。図 22 に, 各 地震波入力時における引抜力と曲げモーメントの最大値, および層 間変形角 1/120 rad 時の結果をまとめて示す。

図22 柱脚部の引抜力と曲げモーメント

図 22 の結果で,(d) 最大曲げモーメントの0℃と40℃の結果に着 目すると,温度の影響は JMA-Kobe 入力時に最も大きく,計算値 が約 2.5 倍異なることが分かる。しかし,これら曲げモーメントの 差異は,層間変位の大小に対応したものと推察され,温度が高いほ ど曲げモーメントが大きくなる点も,地震波によらず同様の傾向に ある。一方,(b) の 1/120 rad 時での差異はごく僅かであった。

これに対し、引抜力に着目すると、(a) に示した 1 / 120 rad 時の 引抜力は、地震波によって温度毎の傾向が異なるが、その差は僅か であった。一方、(c) に示した最大値より、引抜力は最大でも 17 kN 程度で、現在設定しているホールダウン金物の短期許容耐力以内で あることが確認された。

5. まとめ

本稿では、粘弾性制振装置を取り付けた木造軸組架構を対象に、 接合部に対する要素実験を基に架構全体の解析モデルを構築し、擬 似動的加振実験と振動台実験を対象としたシミュレーション解析を 行った。また、粘弾性体の温度を変化させた数値実験を複数の地震 動に対して行い、架構の最大応答、粘弾性体のせん断変形量、各接 合部でのエネルギー吸収量およびその割合, 柱脚部の応力状態につ いて検討した。得られた知見を以下にまとめる。

- 擬似動的加振実験に対するシミュレーション解析の結果,履歴 曲線には、大変形時に差異が見られたものの、ピンチング挙動な どは再現できた。また、等価減衰やエネルギー吸収量においては、 解析結果と試験結果に若干の差異が見られたが、等価剛性、骨格 曲線は両者で良好に対応する結果が得られた。
- 2) 振動台実験のシミュレーション解析を行った結果,各地震波での最大応答,擬似速度応答スペクトル,架構頂部の応答変位,粘弾性体のせん断変形が概ね良好に再現され,擬似動的加振実験の結果と併せ,フレーム解析モデルの妥当性が検証された。
- 3) 粘弾性体の温度上昇に伴い、架構の最大層間変形、粘弾性体の 最大せん断変形は増加する傾向となった。また、架構全体に対す る粘弾性体のエネルギー吸収割合は、入力レベルが大きいほど 低下する傾向が見られたが、すべての検討ケースで 16 ℃ 時に 最も高い吸収性能を有することが確認された。
- 4) 柱脚部の応力に着目した結果,温度変化が引抜力に与える影響 は僅かで、本検討の範囲では、本制振装置に設定しているホール ダウン金物の短期許容耐力以内であることが確認された。

謝辞

本研究は、GVA 友の会に多大な協力を頂きました。また、実験の 実施にあたり、(独) 防災科学技術研究所、(株) 住宅構造研究所に は多くの便宜を頂きました。記して謝意を表します。

参考文献

- 青木拓哉,永野正行,佐藤利昭,真崎雄一,井口道雄:粘弾性制振装置を付与した木造軸組架構の擬似動的解析による性能評価,日本建築学会技術報告集,第38号,pp.165-170,2012.2
- 佐藤利昭, 永野正行, 井口道雄, 真崎雄一:粘弾性制振装置を付加した木造 住宅の地震応答解析, 日本建築学会構造系論文集, 第 690 号, pp.1149-1458, 2013.8
- 3) 松田和浩, 笠井和彦, 坂田弘安: フレームモデルによる木質制振架構の地震 応答解析, 日本建築学会構造系論文集 第76巻 第661号, pp.609-618, 2011.3
- 4)黄一華,加藤敬史,和田章,岩田衛,竹内徹,大熊潔:振動数と温度に依存 する粘弾性ダンパーの動的力学モデル,日本建築学会構造系論文集,第 516 号, pp.91-98, 1999.2
- Ferry, J. D.: Viscoelastic Properties of Polymers, John Wiley & Sons, Inc., Third Ed., New York, 1980.
- 6) 加藤惇, 佐藤利昭, 真崎雄一, 井口道雄, 永野正行, 肥田剛典:粘弾性制振 装置の接合部特性の評価 その 1 接合部の要素実験, 日本地震工学会大会, CD-R, 2012. 11
- 7) 佐藤利昭,加藤惇,真崎雄一,井口道雄,永野正行,肥田剛典:粘弾性制振装置の接合部特性の評価 その2 接合部のモデル化とフレーム解析,日本 地震工学会大会,CD-R,2012.11
- 8) 真崎雄一,佐藤利昭,井口道雄:木造軸組架構における制振構造の研究 粘弾性制振装置を含む架構の静的解析モデル(その1),日本建築学会大 会学術講演梗概集,C-1,pp.473-474,2009.8
- 9) 稲山正弘: 木材のめりこみ理論とその応用-靭性に期待した木質ラーメン接合部の耐震設計に関する研究-,東京大学学位論文,1991.12
- 10)井口道雄,佐藤利昭,真崎雄一,涌井栄治,加藤惇,肥田剛典,永野正行: 制振装置を含む木造軸組架構の振動台実験による性能検証試験 その 1 試験体および実験の概要,日本建築学会学術講演梗概集, CD-R, 2013.8
- 11)笠井和彦, 寺本道彦, 大熊潔, 所健: 粘弾性体の温度・振動数・振幅依存 を考慮した構成則 その1 線形領域における温度・振動数依存のモデル 化, 日本建築学会構造系論文集 第543号, pp.77-86, 2001.5
- 12)笠井和彦, 所健: 粘弾性体の温度・振動数・振幅依存を考慮した構成則 その2 温度上昇および歪・歪速度がもたらす非線形性のモデル化, 日本建築学会構造系論文集 第561号, pp.55-63, 2002.11

[2013年10月16日原稿受理 2014年1月7日採用決定]