木造軸組構法における制振構造の研究

-エネルギー法による制振装置の性能評価-

木造軸組構法 制振装置 エネルギー法 粘弾性ダンパー 1. はじめに

2005年に国交省告示として「エネルギーの釣合いに基づく 耐震計算法(以下、エネルギー法)」が新たに制定され、制振 装置を含む建物の耐震性能評価が可能となったが、その条項 をそのままに制振装置を含む木造住宅に適用することはでき ない。本報では、既報^{1),2)}で実施した動的実験で得られた制 振装置の構造特性を基に、エネルギー法を適用する上で必要 となる、ダンパー部分の等価な繰り返し回数(*n*_i)と主架構 とのエネルギー分配を検討した結果について述べる。

2. 制振装置のモデル化

既報²⁾では、実験を基に粘弾性制振装置(GVA)の構造特 性を抽出した。抽出した GVA 要素の履歴特性を図1に示す。

図1 制振装置(GVA)の履歴特性(2スパン分)

制振装置 GVA を含む木造架構の地震応答計算を行うため に、図1の履歴特性の簡易モデル化を試みた。エネルギー法 では希に発生する地震動に対する検証と、極めて希に発生す る地震動に対する検証で計算方法が異なるため、本報では各 入力レベル毎に履歴モデルを作成する。各モデル(D-Model, S-Model)の概要を図2に、パラメータを表1に示す。

図 2 GVA 要素のモデル

図1に示す制震装置 GVA の履歴特性のエネルギー吸収量 に着目し、実験値と簡易モデルの結果とを比較して図3に示 す。図よりモデル化とパラメータの妥当性が確認された。

Performance Evaluation of a Passive Control Device for Timber House based on Energy Method

正会員 真崎雄一^{*1} 同 佐藤利昭^{*2} 同 井口道雄^{*3}

表 1 各モデルの諸元

検証エデル	D-Model (d)	S-Model		
検証モブル		Bi-linear (s1)	Slip (s2)	
初期剛性:k [kN/mm]	1.41	0.95	0.24	
降伏変位: [mm]	3.79	3.79	22.75	
	0.3	0.11	0.3	

- 3. 応答解析による検証
- 3.1 1 質点モデルの設定と解析条件

制振装置を有する木造住 宅にエネルギー法を適用す る上で必要となるダンパー の効果に関する検討を、想 定した建物モデルの応答解 析により行う。本報では、 図4に示す1質点弾塑性モ デルを用いて検討する。

図 4 1 質点系弾塑性モデル

想定した建物は、標準的な木造住宅(2階床面積:60m², 1階床面積:80m²,軽い屋根)で、壁量は地震力に対する必 要壁量の1.5倍とする。この建物について固有値解析を行い 1次固有周期0.502 secを算出した上で、図4に示す等価質 量 M(=32.5 ton)を決定する。

これを基準モデルとして、主架構ばねの割線剛性より評価 した初期固有周期を 0.2sec ~ 0.7sec の範囲で 0.05sec 刻みに 合計 11 種類の解析モデルを設定した。ここで設定したパラ メータは、住宅品質確保促進法による耐震等級 3 以上の建物 から建築基準法の要件を満足しない範囲までを想定している。 また各モデルの主架構ばねは、Bi-linear + Slip 型の復元力特 性で表現し、各係数は壁倍率からの換算法に従った ³⁾。解析 モデルの主架構ばね特性の諸元を表 2 に示す。

表 2 各検証用モデルの主架構ばねのパラメータ

		Bi-Linear		Slip			
モデル名	初期剛性:k	降伏変位:		初期剛性:k	降伏変位:		
	[kN/mm]	[mm]		[kN/mm]	[mm]		
T-0.2	21.38			10.69			
T-0.25	13.69			6.84			
T-0.3	9.50			4.75			
T-0.35	6.98			3.49			
T-0.4	5.35			2.67			
T-0.45	4.22	1.53	0.05	2.11	18.2	0.057	
T-0.5	3.42				1.71		
T-0.55	2.83			1.41			
T-0.6	2.38			1.19			
T-0.65	2.02			1.01			
T-0.7	1.75			0.87			

(モデル名の数値は初期固有周期を表す)

制振装置は通常の配置とし、6P相当の履歴モデルを設定した。応答解析にはNewmark-8法(8=1/4)を用い、主架構の減衰は瞬間剛性比例型とし、減衰定数を3%と仮定した。検証に用いた入力地震波はEl Centro NS波, Hachinohe NS波, Hachinohe EW 波, Taft NS 波, Taft EW 波, JMA Kobe NS 波を25kine, 50kine に基準化した波形と、日本建築センター波(BCJ Lv.1 および Lv.2)を用いた。参考として、各入力地震波の最大加速度と速度を表3に示す。

MASAKI Yuichi SATO Toshiaki IGUCHI Michio

	原波		25kine相当		50kine相当	
入力地震動	加速度	速度	加速度	速度	加速度	速度
	[gal]	[kine]	[gal]	[kine]	[gal]	[kine]
El Centro.NS	341.7	34.2	249.7	25.0	499.5	50.0
Hachinohe.EW	182.9	35.5	128.8	25.0	257.6	50.0
Hachinohe.NS	225.0	33.9	165.9	25.0	331.7	50.0
JMA Kobe.NS	818.0	90.9	224.9	25.0	449.8	50.0
Taft.EW	179.5	15.7	253.3	25.0	506.6	50.0
Taft.NS	152.7	17.4	242.5	25.0	485.0	50.0
BCJ波-Lv.1	-	-	207.3	29.0	-	-
BC.L波-Lv2	-	-	-	-	355.7	56.3

表3 入力地震動の最大加速度と速度

3.2 ダンパー部分の繰り返し回数の検討

制振装置の等価な繰り返し回数 (n_i) は、ダンパー部分の 平均累積塑性変形倍率 $_d \eta_i$ と最大塑性率 $_d \mu_{max}$ をもとに、次式 により求められる。

$$n_i = {}_d \overline{\eta}_i / ({}_d \mu_{\max} - 1) \tag{1}$$

式(1)に示す平均累積塑性変形倍率 $_{d\eta_i}$ は、本報で想定した Bi-linear 型の復元力特性の場合には、塑性歪みエネルギーと して吸収されるエネルギー $_{dE_{pi}}$,降伏荷重 $_{dQ_{ui}}$ 降伏変位 $_{d\delta_i}$ を用いて、式(2)より算出される。⁴⁾

$${}_{d}\overline{\eta}_{i} = \frac{1}{2} \cdot \left(1 - \beta\right) \cdot \frac{{}_{d}E_{pi}}{{}_{d}Q_{ui} \cdot {}_{d}\delta_{ui}}$$
(2)

以上により算出される $d\bar{\eta}_i \geq_d \mu_{max}$ —1 の関係を各入力レベ ル毎にまとめ、図 5 に示す。但し、主架構の最大応答変位が 希に発生する地震動で 1/120rad.,極めて希に発生する地震 動で 1/15rad.を超えた場合には、ダンパー部分の履歴モデ ルと対応しないため、各図から除外している。また極めて希 に発生する地震動の検証では、Slip 型の復元力特性を含むた め、既往研究⁵⁾を参考に、式(2)の降伏荷重を降伏せん断耐力 に読み換えて、各数値を算出した。

*1:(有) MASA 建築構造設計室

*3:東京理科大学理工学部,教授,工博

図 5 より、希に発生する地震動では概ね $n_i = 1.5 \sim 6.0$ 、極めて希に発生する地震時動で $n_i = 4.0 \sim 30.0$ の範囲に数値が分布し、平均値はそれぞれ $n_i = 4.6$, $n_i = 11.3$ となった。以上より各入力レベルの地震動に対する検証には、これらの下限値である $n_i = 1.5$ および 4.0 を用いることが望ましい。 3.3 塑性歪みエネルギーの分配則

主架構およびダンパー部分の降伏変位が等しければ、希に 発生する地震動では、塑性歪みエネルギーの分配は剛性に比 例する。そこで本報では、S-Modelによる解析結果を対象に 主架構とダンパー部分の塑性歪みエネルギーの分配則を導く。

応答解析結果に基づき、ダンパー部分の塑性歪みエネルギー量 $_{d}W_{p}$ と、建物全体の塑性歪みエネルギー量 $_{W_{p}}$ の関係を図6にまとめる。図6は縦軸を $_{d}W_{p}/W_{p}$ とし、初期固有周期の関係(左)と制振装置の等価剛性($_{d}k_{eq}$)を建物全体の等価剛性($_{keq}$)で除した剛性比との関係(右)が示してある。

図6 *dW_pとW_p*の関係(左:初期固有周期,右:等価剛性比) 左図より、Bi-Linear+Slipの復元力特性を用いた場合でも、 塑性歪みエネルギーと初期固有周期との間に強い相関がある ことが認められる。また右図より、制振装置には分配される 塑性歪みエネルギーは建物全体との等価剛性比の 2.8 倍であ ることが分かった。これより、ダンパー部の塑性歪みエネル ギー量 *dW_p*と、それ以外の構造躯体の塑性歪みエネルギー量 *dW_p*は次式により推定できることになる。

$${}_{d}W_{p} = \alpha \left({}_{d}k_{eq} / k_{eq} \right) \cdot W_{p}$$
(3)

$$_{f}W_{p} = \left\{1 - \alpha \left(_{d}k_{eq} / k_{eq} \right)\right\} \cdot W_{p}$$

$$\tag{4}$$

<u>4. まとめ</u>

本研究では、粘弾性制振装置を含む木造住宅の耐震性をエネルギー法により評価する上で必要となるダンパー部分の等価な繰り返し回数(*n*_i)とエネルギー分配則を示した。- 謝辞-

本研究は GVA 友の会関係各位の多大な協力のもとに実施された。また 元東京理科大学大学院生小川英記君の努力に負うところが大きい。記し て謝意を表します。

```
- 参考文献 -
```

- 1) 佐藤他:木造軸組構法における制振構造の研究,日本建築学会大会学 術講演梗概集(近畿),C1 (22044),PP87~88,2005.9
- 2) 佐藤他:木造軸組構法における制振構造の研究,日本建築学会大会学 術講演梗概集(関東),C1 (22154), PP307~308,2006.9
- 3) JSCA 編:木造 建築構造の設計,2004.8
- 4) 秋山宏:建築物の耐震極限設計 第2版,1987.5
- 5) 五十田博:エネルギーの授与に基づく耐震性能評価法の木質構造への 適用,日本建築学会大会学術講演梗概集(北陸),C1,PP401~402, 2002.9

Masa Architectural Design Bureau

- Masa Architectural Design Bureau M.Eng.
- Prof., Tokyo University of Science Dr.Eng.

^{*2:(}有) MASA 建築構造設計室(元東京理科大学大学院),工修